Publication
Names
  • Anton V. Arefiev
  • Anton Shatskiy
  • Ivan V. Podborodnikov
  • Sergey V. Rashchenko
  • Artem D. Chanyshev
  • Konstantin D. Litasov
Title
The system K$_2$CO$_3$-CaCO$_3$ at 3 GPa: link between phase relations and variety of K-Ca double carbonates at $\łeq$ 0.1 and 6 GPa
Abstract
The K$_2$CO$_3$-CaCO$_3$ system is important both in materials science as a source of new nonlinear optical materials and in the Earth science as a sub-system modeling phase relations in fluxing component of mantle rocks responsible for the generation of deep-seated magmas. Existing data on phase relations in the K$_2$CO$_3$-CaCO$_3$ system at $\łeq$ 0.1 and 6 GPa show significant difference in intermediate compounds and, therefore, do not allow any interpolation between these pressures. Here, we report experimental results on melting and subsolidus phase relations in the system K$_2$CO$_3$-CaCO$_3$ at 3 GPa and 800-1285 °C. At 800 °C, the system has two intermediate compounds: K$_2$Ca(CO$_3$)$_2$, synthetic analog of mineral buetschliite, and K$_2$Ca$_2$(CO$_3$)$_3$. As temperature increases to 850 °C, a third intermediate compound, K$_2$Ca$_3$(CO$_3$)$_4$, appears. The calcite-aragonite transition boundary is located at 962 $\pm$ 12 °C. Maximum solid solution of CaCO$_3$ in K$_2$CO$_3$ is 18 mol% at 950 °C. The K carbonate-K$_2$Ca(CO$_3$)$_2$ eutectic is established near 970 °C and 56 mol% K$_2$CO$_3$. The melting point of K$_2$CO$_3$ corresponds to 1275 $\pm$ 25 °C. K$_2$Ca(CO$_3$)$_2$ melts incongruently at 988 $\pm$ 12 °C to produce K$_2$Ca$_2$(CO$_3$)$_3$ and a liquid containing 53 mol% K$_2$CO$_3$. K$_2$Ca$_2$(CO$_3$)$_3$ melts congruently just above 1100 °C. The K$_2$Ca$_2$(CO$_3$)$_3$-K$_2$Ca$_3$(CO$_3$)$_4$ eutectic is situated near 1085 °C and 29 mol% K$_2$CO$_3$. K$_2$Ca$_3$(CO$_3$)$_4$ melts incongruently at 1100 °C to produce calcite and a liquid containing 28 mol% K$_2$CO$_3$. Considering our present results and previous data on the K$_2$CO$_3$-CaCO$_3$ system, a range of K-Ca double carbonates changes upon pressure and temperature increase in the following sequence: K$_2$Ca(CO$_3$)$_2$ (buetschliite), K$_2$Ca$_2$(CO$_3$)$_3$ ($\łeq$ 0.1 GPa; < 547 °C) -> K$_2$Ca(CO$_3$)$_2$ (fairchildite), K$_2$Ca$_2$(CO$_3$)$_3$ ($\łeq$ 0.1 GPa; 547-835 °C) -> K$_2$Ca(CO$_3$)$_2$ (buetschliite), K$_2$Ca$_2$(CO$_3$)$_3$, K$_2$Ca$_3$(CO$_3$)$_4$ (ordered) (3 GPa; 800-1100 °C) -> K$_8$Ca$_3$(CO$_3$)$_7$, K$_2$Ca(CO$_3$)$_2$ (buetschliite), K$_2$Ca$_3$(CO$_3$)$_4$ (disordered) (6 GPa; 900-1300 °C).
Keywords
Raman spectroscopy, MIR, FIR, high pressure, high temperature, Phase relations, band position, minerals, K-Ca carbonates, alpha-K2Ca(CO3)2, K2Ca2(CO3)3, K8Ca3(CO3)7, K2Ca3(CO3)4, butschliite, buetschliite, fairchildite
Content
band list data, spectral data, experimental physics, earth sciences
Year
2019
Journal
Physics and Chemistry of Minerals
Volume
46
Number
3
Pages
229 - 244
Document type
article
Publication state
published