Publication
Names
  • B. Jost
  • A. Pommerol
  • O. Poch
  • B. Gundlach
  • M. Leboeuf
  • M. Dadras
  • J. Blum
  • N. Thomas
Title
Experimental characterization of the opposition surge in fine-grained water–ice and high albedo ice analogs
Abstract
We measured the bidirectional reflectance in the VIS–NIR spectral range of different surfaces prepared from small-grained spherical water–ice particles over a wide range of incidence and emission geometries, including opposition. We show that coherent backscattering is dominating the opposition effect on fresh sample material, but its contribution decreases when particles become more irregularly shaped and the bulk porosity increases. Strong temporal evolution of the photometric properties of icy samples, caused by particle sintering and resulting in a decrease of backscattering, is shown. The sintering of the ice particles is documented using cryo-SEM micrographs of fresh and evolved samples. To complement the photometric characterization of ices, multiple high albedo laboratory analogs were investigated to study the effects of shape, grain size distribution, wavelength and surface roughness. In addition to the main backscattering peak, the phase curves also display the effect of glory in the case of surfaces of granular surfaces formed by either spherical ice or glass particles. We show that the angular position of the glory can be used to determine accurately the average size of the particles. Reflectance data are fitted by the Hapke photometric model, the Minnaert model and three morphological models. The resulting parameters can be used to reproduce our data and compare them to the results of other laboratory experiments and astronomical observations.
Keywords
icy satellites, instrument, photometry, gonio radiometer, bidirectional reflection, Vis-NIR, ice, inorganic matter, H2O, surface, Solar System, comets, comet nucleus, Enceladus, Europa, planetary science
Content
instrument-technique, numerical model, instrument-technique, sample, planetary sciences, remote sensing, material-matter, BRDF data
Year
2016
Journal
Icarus
Volume
264
Pages
109 - 131
Document type
article
Publication state
published
Comments
None